# 什么是布隆过滤器?如何解决高并发缓存穿透问题?

作者:Tom哥
公众号:微观技术
博客:https://offercome.cn (opens new window)
人生理念:知道的越多,不知道的越多,努力去学

# 简介

日常开发中,大家经常使用缓存,但是你知道大型的互联网公司面对高并发流量,要注意缓存穿透问题吗!!! 本文会介绍布隆过滤器,空间换时间,以较低的内存空间、高效解决这个问题。

本篇文章的目录:

# 性能不够,缓存来凑

现在的年轻人都喜欢网购,没事就逛逛淘宝,剁剁手,买些自己喜欢的东西,释放下工作压力。

地址: https://detail.tmall.com/item.htm?id=628993216729

上图是一个天猫 iphone12 的商品详情页,id表示商品的编号

我们都知道淘宝的访问量是非常高的,为了提升系统的吞吐量,做了很多性能优化,其中非常重要一点是将信息异构到缓存中。

有句话说的好:性能不够,缓存来凑。

但是,使用缓存时,我们要关注一个重要问题,如果缓存没有命中怎么办?

# 缓存没有命中,怎么办?

  • ①我们先查询缓存,判断缓存中是否有数据
  • ②如果有数据,直接返回
  • ③如果缓存为空,我们需要再查一次数据库,并将数据格式异构化,然后预热到缓冲中,然后将结果返回

注意:

步骤 ③ 存在风险漏洞,如果缓存中数据不存在,压力会转嫁给数据库。假如被竞争对手利用,搞无效请求流量攻击,瞬间大量请求打到数据库中,对系统性能产生很大影响,很容易把数据库打挂,这种现象称为缓存穿透。

# 如何处理缓存穿透?

我们的思路是,缓存中能不能判断这个数据库值的存在性,如果真的不存在,直接返回,也避免一次数据库查询。

由于不存在是个无限边界,所以,我们采用反向策略,将存在的值建立一个高效的检索。每次缓存取值时,先走一次判空检索。

简单归纳下,这个框架的要求:

  • 快速检索
  • 内存空间要非常小

经调研,我们发现布隆过滤器具备以上两个条件。

# 什么是布隆过滤器?

布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。

  • 优点:空间效率和查询时间都远远超过一般的算法。
  • 缺点:有一定的误识别率,删除困难。

# 布隆过滤器如何构建?

布隆过滤器本质上是一个 n 位的二进制数组,用0和1表示。

假如我们以商品为例,有三件商品,商品编码分别为,id1id2id3

1、首先,对id1,进行三次哈希,并确定其在二进制数组中的位置。

三次哈希,对应的二进制数组下标分别是 2、5、8,将原始数据从 0 变为 1。

2、对id2,进行三次哈希,并确定其在二进制数组中的位置。

三次哈希,对应的二进制数组下标分别是 2、7、98,将原始数据从 0 变为 1。

下标 2,之前已经被操作设置成 1,则本次认为是哈希冲突,不需要改动。

Hash 规则:如果在 Hash 后,原始位它是 0 的话,将其从 0 变为 1;如果本身这一位就是 1 的话,则保持不变。

# 布隆过滤器如何使用?

跟初始化的过程有点类似,当查询一件商品的缓存信息时,我们首先要判断这件商品是否存在。

  • 通过三个哈希函数对商品id计算哈希值
  • 然后,在布隆数组中查找访问对应的位值,0或1
  • 判断,三个值中,只要有一个不是1,那么我们认为数据是不存在的。

注意:布隆过滤器只能精确判断数据不存在情况,对于存在我们只能说是可能,因为存在Hash冲突情况,当然这个概率非常低。

# 如何减少布隆过滤器的误判?

1、增加二进制位数组的长度。这样经过hash后数据会更加的离散化,出现冲突的概率会大大降低

2、增加Hash的次数,变相的增加数据特征,特征越多,冲突的概率越小

# 布隆过滤器会不会很费内存?

带着疑问,我们来做个实验

假设有1千万个数据,我们需要记录其是否存在。存在的话标记1,不存在标记为0。技术选型,框架采用Redis的BitMap存储。

数据初始化预热代码:

redisTemplate.executePipelined(new RedisCallback<Long>() {
    @Nullable
    @Override
    public Long doInRedis(RedisConnection connection) throws DataAccessException {
        connection.openPipeline();
        for (int offset = 10000000; offset >= 0; offset--) {
            boolean value = offset % 2 == 0 ? true : false;
            connection.setBit("bloom-filter-data-1".getBytes(), offset, value);
        }
        connection.closePipeline();
        return null;
    }
});
System.out.println("数据预热完成");
1
2
3
4
5
6
7
8
9
10
11
12
13
14

性能有点慢,我们也可以采用分组形式,10000个数一组,多批次提交。

数据上传完了后,大小 1.19M,跟我们设想的一样。

计算公式: 10000000/8/1024/1024=1.19M

# Java应用中,如何使用布隆过滤器?代码实例

Java语言的生态非常繁荣,提供了很多开箱即用的开源框架供我们使用。布隆过滤器也不例外,Java 中提供了一个 Redisson 的组件,它内置了布隆过滤器。

首先引入依赖包

<dependency>
    <groupId>org.redisson</groupId>
    <artifactId>redisson</artifactId>
    <version>3.11.1</version>
</dependency>
1
2
3
4
5

代码示例:

/**
 * @author 微信公众号:微观技术
 */
@Test
public void test5() {
    Config config = new Config();
    config.useSingleServer().setAddress("redis://172.16.67.37:6379");
    RedissonClient cient = Redisson.create(config);
    RBloomFilter<String> bloomFilter = cient.getBloomFilter("test5-bloom-filter");
    // 初始化布隆过滤器,数组长度100W,误判率 1%
    bloomFilter.tryInit(1000000L, 0.01);
    // 添加数据
    bloomFilter.add("Tom哥");
    // 判断是否存在
    System.out.println(bloomFilter.contains("微观技术"));
    System.out.println(bloomFilter.contains("Tom哥"));
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

运行结果:

false   // 肯定不存在
true    // 可能存在,有1%的误判率
1
2

注意:误判率设置过小,会产生更多次的 Hash 操作,降低系统的性能。通常我们的建议值是 1%

# 布隆过滤器二进制数组,如何处理删除?

初始化后的布隆过滤器,可以直接拿来使用了。但是如果原始数据删除了怎么办?布隆过滤器二进制数组如何维护?

直接删除不行吗?

还真不行!因为这里面有Hash冲突的可能,会导致误删。

怎么办?

1、开发定时任务,每隔几个小时,自动创建一个新的布隆过滤器数组,替换老的,有点CopyOnWriteArrayList的味道

2、布隆过滤器增加一个等长的数组,存储计数器,主要解决冲突问题,每次删除时对应的计数器减一,如果结果为0,更新主数组的二进制值为0

# 布隆过滤器的应用场景

  • 本文重点介绍的,解决缓存穿透
  • 网页爬虫对URL的去重,避免爬取相同的URL地址
  • 反垃圾邮件,从数十亿个垃圾邮件列表中判断某邮箱是否垃圾邮箱
上次更新: 2023/3/4